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We consider spectral methods for solving differential equations on 
unbounded domains. In particular, we consider a spectral rational func- 
tion method and a method based on domain truncation combined with 
Fourier series. Both methods contain a free parameter which determines 
the accuracy of the spectral method. When solving evolution equations 
the optimal parameter may change with time resulting in a significant 
loss of accuracy if the parameter is kept fixed. We develop an automatic 
algorithm which adapts the parameter at regular time levels to maintain 
optimum accuracy. In numerical tests we found that the proposed 
method is robust and efficient. 0 1992 Academic Press, Inc 

1. INTRODUCTION 

Spectral methods for solving differential equations have 
become very popular in the last decade or two. (For a 
general introduction to these methods, see for example the 
monographs by Gottlieb and Orszag [ 1 ] or Canuto et al. 
[2].) The methods are based on global interpolants, in con- 
trast to the methods of finite differences or finite elements. 
For periodic problems the global interpolant is a Fourier 
series and, when Dirichlet or Neumann conditions are 
enforced, a Chebyshev, Legendre, or some other polyno- 
mial bases are used. 

For problems on unbounded domains the question of 
which basis to use seems not quite settled yet. The com- 
petitors are Hermite polynomials (Funaro and Kavian 
[ 3]), sine functions (Stenger [4] ), rational functions (Boyd 
[S] ), or simply truncating the domain and then using 
Fourier or Chebyshev expansions, possibly combined with 
a mapping (Grosch and Orszag [6]). 

In this paper we shall consider two of these approaches, 
namely, rational functions and domain truncation com- 
bined with Fourier series. The reason for selecting these two 
approaches is that they can both be implemented efhciently 
with the fast Fourier transform (FFT). 

In both the domain truncation and rational function 
approaches there is a free parameter L that needs to be 
fixed. In the domain truncation approach it is the size of the 

truncated computational domain, and in the rational func- 
tion method it is a stretching variable. Obviously the 
optimum choice for such a parameter would be the one that 
maximizes the accuracy of the spectral method. 

Some theory exists for estimating these optimal 
parameters, see, for example, Weideman and Cloot [7] or 
Boyd [S]. However, these formulas are sometimes difficult 
to use and obviously require some knowledge of the func- 
tion we are approximating. When solving evolution equa- 
tions, for instance, the properties of the function are usually 
changing with time. Even if the optimal L corresponding to 
the initial condition can be found theoretically, it may soon 
become non-optimal, resulting in a significant decrease in 
accuracy. In this paper we discuss an automatic algorithm 
for estimating the optimal parameter. 

The outline of the paper is as follows. In Section 2 we give 
a brief overview of Fourier differentiation on periodic 
domains. In Section 3, we extend these ideas to unbounded 
domains, introducing both the domain truncation and 
rational function approaches. We describe the updating 
algorithm in Section 4, and in Section 5 we apply it to two 
test problems. Finally, in Section 6 we investigate numeri- 
cally whether the increase in accuracy justifies the extra cost 
of implementing the algorithm. 

2. FOURIER DIFFERENTIATION 
ON A PERIODIC GRID 

The Fourier pseudospectral differentiation process can be 
described as follows: Let u(s) be a 2n-periodic function, and 
let uI= u(s~) denote the values of the function sampled on 
the uniform grid sj = 2nj/N, j= -N/2, . . . . N/2 - 1. The 
discrete Fourier series of the data vi is defined as 

N/2 - 1 

vi = ‘C ckeik+, (1) 
k= -N/2 
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where the coefficients ck are given by Domain Truncation 

ck=kjycN:, vjeCiksJ. (2) 

We truncate XE (-co, co) to XE C-L, L]. Then the 
latter interval is scaled linearly to s = [ - 71, n] through 

Once the coefficients ck have been computed, the 
approximate derivative vi x u ‘(sj) can be computed through 

N/2- 1 

v,‘= c ikckeeik”J, 

k=-N/2+1 
(3) 

a process requiring two FFTs, i.e., O(Nlog N) operations. 
For smooth functions this differencing process is very 
accurate. We quote the following results from Tadmor [9]. 
For functions v(z) analytic in the strip 

we have 

,,ya;,2 IV; - v’(sj)I d C, exp( - +qN), < (4) 

where C, is a slowly varying function of N. The error 
therefore decays essentially exponentially as N+ 00, and 
the decay rate is determined by the position of the nearest 
singularity to the real axis. For non-analytic functions the 
convergence rate is no longer exponential, but of the form 
N -’ with s bounded only by the regularity of the solution. 

Note that in the case of an analytic function, the 
asymptotic rate of decay of the Fourier coefficients of the 
function v(s) is 

ck = O(exP(-vl Ikl)), (5) 

as Ikl -+ co, see for example Dieudonnt [ 10, p. 2801. This 
means that the accuracy of the Fourier differentiation 
process is of the same order of magnitude as the last Fourier 
coefficient retained in the expansion. We shall exploit this 
fact in our adaptive algorithms, by optimizing the accuracy 
of the differentiation through minimizing the magnitude of 
the highest Fourier coefficient. 

3. FOURIER DIFFERENTIATION 
ON AN INFINITE GRID 

In this paper we are only concerned with Fourier differen- 
tiation on the infinite interval. We shall consider two 
approaches to this problem namely (1) domain truncation, 
and (2) rational functions. 

s = xx/L (6) 

and Fourier differentiation can be applied as described in 
Section 2. Obviously this introduces artificial periodicity, 
and hence a discontinuity at x = f L. The Fourier differen- 
tiation process is therefore not as accurate as with analytic 
periodic functions (see Weideman and Cloot [7], for a 
discussion). 

Rational Functions 

An alternative to the above domain truncation approach 
is the use of rational functions. We introduce the mapping 

x = L tan(s/2), SEC-7&K]; (7) 

and let v(s) = u(x). Then the Fourier series representation of 
v(s), given by 

v(s) = f ckeiks 
k=-cc 

= a,/2 + f ak cos(ks) + bk sin(ks), (8) 
k=l 

becomes 

u(x) = a,/2 + f akCk(x) + bk&(x)9 (9) 
k=l 

where C,(x) = cos(2k tan-‘(x/L)) and S,(x) = 
sin(2k tan- ‘(x/L)) turn out to be rational functions of x 
(see Boyd [S]). 

We use the points xj = L tan(sj/2), where sj = 2nj/N, 
j = -N/2, . . . . N/2 - 1, as collocation points. The derivative 
of the data uj= U(Xj) can be computed through the chain 
rule: 

du 

dx x=x, 
= (2/L) COS2(Sj/2) 2 _ . 

s - s, 
(10) 

The derivative dv/ds is computed by the Fourier- 
differencing process described by Eq. (2) and (3), with 
u, 3 uj. In both the domain truncation and the rational 
function approaches we have to fix the free parameter L, for 
a given N. Obviously the optimal choice would be the one 
that maximizes the accuracy of the differentiation process 
(10). The demonstration of the existing of such an optimal 
value is made in [7], where it is shown that the optimal 
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choice, L = L,,, , can be determined through an asymptotic 
balance between the resolution and boundary errors arising 
during the computation. 

All theoretical estimates of the optimal parameters rely, 
however, on a priori knowledge of the properties of the 
function to be differentiated. Obviously this is not always 
available, and in the next section we shall describe an 
automatic procedure for estimating the parameter, given 
only the values of the function to be differentiated. 

Our strategy is based on the following assumption. 
Fourier differentiation of u(s) will be accurate if the inter- 
polation of u(s) by a Fourier series is good. This will be the 
case if the Fourier coefficients decay rapidly. We therefore 
aim to select L in order to minimize the magnitdue of the 
highest Fourier coefficient retained in the expansion 

r= Ic-N,& =; 
N/2 - 1 

1 teljJuj 3 

J= -N/2 

4. THE ALGORITHM where uj = u(sj) = a(.~,). To verify that the above strategy is 

We start by noting that both the differentiation proce- 
indeed practical, we made the following test. We compared 

dures described in the previous section can be expressed as 
the errOr 

_ 3 
s - s, 

E= ,jya;,2 b4-q) - u; I, < (12) 

where u(x) = u(s), and s = g(x) is either given by the linear where u,’ is the numerically computed derivative (1 1 ), with 
mapping (6) (domain truncation), or the tangent mapping the magnitude of r, for a test function U(X) = sech x’s. The 
(7) (rational functions). Since the differentiation g’(x) is results, for both domain truncation and rational function, 
done analytically, the error is committed in the Fourier dif- reproduced on Figs. la-b show clearly that the minimum 
ferentiation du/ds. We therefore aim to select the parameter value off and the minimum value of the error (12) occur at 
L in (6) and (7) so that this can be done as accurately as approximately the same value of L. 
possible. Thus, at first sight, the monitoring of the optimal value 

(4 
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FIG. 1. Comparison of the error log,,, E (as defined by (12)) and the magnitude of the highest Fourier coefficient log,, r, for different values 
when either, domain truncation (a) or rational functions (b) are used; N = 64. 
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Lopt through an algorithm based on the satisfaction of the 
additional condition 

N/Z--l 

ac-,&aL = 1 (- l)‘ju’(x,) = 0 
j= -N/2 

seems to be relevant. 
Numerical tests of this procedure reveal that it is working 

well when dealing with the domain truncation method. 
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However, it cannot be extended to the case of rational func- 
tions. The problem is that in this case the graph of c-N/2 as 
a function of L has many local minima (compare Fig. l), 
and convergence to a non-optimal L is easily obtained. We 
therefore disregard this approach in favor of a cruder, but 
more robust, algorithm. We simply compute r = 1 c _ N,2 1 for 
different values of L, and the optimum L is then obtained 
through a least squares quadratic fit. 

log r 

Li&t = 1.2Lopt 

z 
“: '1 

Linit = zLOpt 

FIG. 2. The values of log,,, Tas computed in the algorithm for different values of L (circles), together with the least squares fit log,,, r= aL2 + bL + c 
(squares) when using (a) domain truncation; (b), (c) rational functions; N = 64. 
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ALGORITHM. Given the discrete function uj, j= approximation of Lopt. This assertion is supported in Fig. 2c 
-N/2, . . . . N/2 - 1, this algorithm finds an estimate for the showing the fitting obtained when considering an initial L 
optimal parameter L. It is assumed that the initial data uj that is either 80% less or 100% more than the optimal 
correspond to a grid with mapping parameter L = LInit. value. 

Step 1. Choose a value of L and compute xj = Ls,/x (or 
xi = L tan(s,/2)), where s, = 2rcj/N, and u, = u(s,) = u(x,), 
j = -N/2, . . . . N/2 - 1, from the initial data uj, by means of 
Fourier interpolation. 

Step 2. Compute 

Note one could use more sophisticated minimization 
algorithms but we found that the simple quadratic lit works 
well in practice. As mentioned earlier, the function usually 
contains a number of local minima and the quadratic fit ser- 
ves to smooth the curve. At any rate, one is only interested 
in obtaining an estimate for L to within say lo%, not 1%. 

, I N/2--1 I 

(13) 

Step 3. Repeat steps 1 and 2 for different values of L. 

Step 4. Fit the data to the statistical model 

logr=aL’+bL+c (14) 

and determine the minimum of the parabola. This provides 
the approximation to Lopt . 

To test this algorithm, we made the following com- 
parisons. We initially supplied the values of a test function 
U(X) = sech x on a N = 64 grid corresponding to a value 
L = Linit, with Linit chosen to be non-optimal. It was then 
left to the algorithm to try and find the optimal L. 

In a first set of experiments we have chosen Linit to be 
20% less than the optimal L (Lopt was determined from 
Figs. la, b), and for the other 20% more. The results are 
shown in Figs. 2a (domain truncation) and 2b (rational 
functions). The circles denote the values of r as calculated 
by (13), and the squares denote the quadratic tit (14). In all 
cases L ranged through seventeen equidistributed values in 
Step 3 of the algorithm. 

These figures should be compared with Figs. la and b, 
respectively. In particular, the curves denoted by the circles 
in Figs. 2a and b are supposed to be approximations of the 
curves log f vs. L in Figs. la and b. These approximations 
are good, except in the case of domain truncation. 
Obviously, this problem arises when one is searching 
for function values at gridpoints outside the range 
x E [ - Lini,, L,,,,], where extrapolation is required. If we 
assume a decay U(X) -+ 0, as x -+ co, this can be achieved by 
setting simply u = 0 for values of x outside [ - Linit, Linit]. 
This introduces large errors in the interpolation process, 
however, unless the decay of u(x) is very rapid. We therefore 
found that the algorithm is not very effective when used in 
conjunction with domain truncation. Of course, the same 
problem does not arise with rational functions, since the 
entire interval x E (co, cc) is mapped to s E [ - rc, X] 
through x = L tan(s/2). In this latter case, the quadratic lit 
manages to find a reasonable approximation for the optimal 
value of L even we, deliberately, choose Linit to be a poor 

5. IMPLEMENTATION FOR 
EVOLUTION EQUATIONS 

We consider evolution equations of the form 

u, = F(x, 4 u,, u,,), --co<x<co. 

By the usual method of lines we approximate this equation 
by the semi-discrete system 

duj 
z= F(xi, uj, u;, ui’), j= -N/2, . . . . N/2 - 1, (15) 

where u,! and u,!’ are computed by the differentiation 
processes described in Section 3, and uj(t) z u(xj, t). 
The standard Runge-Kutta fourth-order method was used 
to integrate this system of ordinary differential equations in 
time. 

We implemented the algorithm of the previous section as 
follows. Since the initial optimal value of the parameter 
corresponding to the initial condition is not always known 
accurately, we use the algorithm to find a relevant initial 
approximate value of LOPt. Then the time integration is 
carried out for a pre-assigned number of time steps, say M, 
at which time the function values are sent to algorithm and 
a new approximation to Lopt is computed. The function 
values on the new grid are then computed through Fourier 
interpolation and the time integration continues for A4 
further time steps, and so on. 

To test the proposed scheme we chose two problems with 
known analytical solutions. 

PROBLEM 1. The nonlinear Schrodinger equation 

u, = iu,, + 8i lu12 u, -CO<X<cO, 

where i2 = - 1. With the initial condition 

u(x, 0) = sech x 
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the exact solution is a “breather” soliton 

u(x, t) = eir 
4 + 3(e’*‘- 1) sech2x 
4 - 3 sin2(4t) sech4x 

sech x 
’ 

(16) 

PROBLEM 2. The outflow problem 

uz= -xu x ) -cx3<x<co. 

With the initial condition 

44 0) = g(x), 

the exact solution is 

u(x, t) = g(xec’). 

We start with Problem 1, using rational functions, N= 64, 

and a time step of At = 0.001. In Fig. 3a we show the 
analytical solution, together with the error 

E= max lui(t)-u(x,, t)[, 
lil C N/2 

as a function of time, for the updating and fixed L algo- 
rithms. For the fixed L algorithm, we selected the optimal 
value corresponding to the initial condition. In the updating 
algorithm we considered the optimal parameter value 
corresponding to the initial condition can only be roughly 
guessed and we provided Linit(t = 0) = 2L,p,(t = 0). Further, 
we performed an updating of L at every M= 20 steps. In 
Step 3 of the algorithm, we let L range through nine values, 
distributed uniformly around the current estimate of the 
optimal parameter. 

1.6 
-8 

8 

L fixed 

z 
z 4 
, I I I 1 -I 
0.00 0.40 0.80 1.20 1.60 0.00 0.40 0.80 I. 20 I. 60 

time time 

FIG. 3. (a) Theoretical solution of Problem 1 (the modulus is shown); (b) error in the numerical solutions of this problem; and (c) the time evolution 
of the parameter L,, . The smooth line denotes the theoretical estimate (18) and the jagged line is the estimate of L,,, as computed by the updating 
algorithm. The parameters are M = 20, N = 64, and AZ = 0.001. 
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Note in Fig. 3b that the updating algorithm maintains an 
accuracy of five to six digits throughout the computation, 
improving by many orders of magnitude on the fixed L 
computation. 

In Fig. 3c we show the evolution of the parameter L,,, as 
computed by the updating algorithm (jagged line) and 
compare it with its optimal expression 

L&f) = { ;N arc cos* [(z sin* 4t)1’43} 1’3, (18) 

obtained through theoretical consideration (see Weideman 
and Cloot [7]). 

As observed in Fig. 3c, the updating algorithm is capable 
of tracking the optimal value of L for a considerable period 
of time. Moreover, the algorithm appears to be robust and 
self-correcting. 

For this problem domain, truncation failed. The updating 
algorithm could not improve significantly on the fixed L 
algorithm, and both methods gave errors much larger than 
when we used rational functions. This failure of the 
updating algorithm is obviously due to the problems 

associated with Fourier extrapolation, as was discussed in 
the previous section. 

Applying the algorithm to Problem 2 with similar initial 
condition, but starting with the initial rough guess 
Li,,J t = 0) = 0.2L,,,( t = 0), yielded the results shown in 
Figs. 4a-c. Once again, the updating algorithm, used in 
conjunction with rational functions, improves by orders 
of magnitude on the fixed L algorithm. In this case, the 
updating algorithm shows its ability to follow the time 
evolution of Lopt even when a fast exponential variation 
occur. For comparisons purpose, we represent on Fig. 4c 
this time evolution as prescribed by the algorithm together 
with its analytical equivalent 

L,,,(t) = $(~*IV)“~ e’. (19) 

We have now established that the updating algorithm 
does indeed lead to a significant increase in accuracy, at 
least for the two test problems considered. However, the 
repeated Fourier interpolations in the algorithm are not 
inexpensive. Is the increase in accuracy sufficient to justify 
the added cost? We attempt to answer this in the next 
section. 

5: 
logEIf 

0.00 0.80 1.60 2.40 3.20 3.20 

time time 

FIG. 4. Same as Fig. 3, but we consider Problem 2. The parameters are M = 10, N = 64, and At = 0.01. 
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TABLE I 

Error E in the Numerical Solution of Problem 1 at Time t = 0.4, 
as well as the CPU Time c 

TABLE III 

Error E in the Numerical Solution of Problem 2 (Initial Condition 
u(x, 0) = sech x), at Time t = 3, as well as the CPU Time c 

N 

M 32 64 

10 E= 3.310-4 E= 8.510-’ 
c = 0.203 c = 0.587 

20 E= 2.910+ E= 1.110-6 
c=o.159 c = 0.406 

40 E=2.910+ E> 10m6 
c=o.130 

loo E= 5.410-4 E> 1O-6 
c=O.116 

Note. The updating algorithm is used. The time step was At = 0.001. 

6. EFFICIENCY 

To see whether the extra cost incurred by the updating 
procedure is indeed worth the effort, we made the following 
tests. We only use rational functions since we have already 
established that the updating algorithm is not very success- 
ful in the domain truncation approach. 

We start with Problem 1 and in Table I we list the error 

computed at t = 0.4 (this corresponds roughly to the time 
that the breather reaches its first peak; see Fig. 3). We also 
list the normalized cpu time; the cpu time corresponding to 
the integration with N = 256 and a fixed L being chosen as 
cpu unit. For comparison, we list in Table II the results for 
the fixed L computation, where we have selected the 
optimal L corresponding to the initial condition. In all 
experiments the same time step At = 0.001 in the time 

TABLE II 

Same as Table I but L Is Kept Fixed at the Optimal Value 
Corresponding to the Initial Condition 

N 

128 256 

E=6.210m4 E=9.310-’ 
c = 0.464 c= 1.0 

N 

M 32 64 

15 E= 1.11o-5 E= 3.110+ 
c = 0.209 c = 0.645 

30 E=4.010-’ E=6.910-a 
c=o.177 c = 0.435 

45 E> 10m4 E= 1.510-’ 
c = 0.387 

Note. The updating algorithm is used. The time step was At = 0.01. 

integration scheme was used. (For this value of AC we 
obtained convergence as far as the time integration is con- 
cerned, for all cases listed in Tables I and II.) We used nine 
values of L in Step 3 of the algorithm, as described before. 

A comparison of Tables I and II reveals that the updating 
algorithm reaches the same accuracy as the fixed L 
computation using roughly four times fewer points in 
space. This amounts to reaching the same accuracy in 
approximately one-half to one-third of the computational 
time, provided the number of steps between updating is 
not unreasonably small. We conclude that the updating 
algorithm is indeed efficient. 

We also give the corresponding results for Problem 2, 
with initial condition u(x, 0) = sech x, in Tables III and IV. 
Again we observe that the updating algorithm can reach an 
accuracy comparable with that of the fixed L algorithm 
using significantly less cpu time. 

Note that for Problem 2 the parameter needs to be 
updated more regularly than in Problem 1. This is, of 
course, due to the fact that for Problem 2 the optimal L 
grows exponentially away from its initial value. In 
Problem 1 the optimal L does not wander far off. 

TABLE IV 

Same as Table III, but L Is Kept Fixed at the Optimal Value 
Corresponding to the Initial Condition 

N 

128 256 

E=6.410-5 E= 8.610-’ 
c = 0.484 c= 1.0 
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7. CONCLUSIONS 

We have presented an updating algorithm for spectral 
computations of evolution equations on unbounded 
domains. Through numerical tests we have ascertained that 
the method is robust and efficient. It beats the methods 
which do not employ updating by roughly a factor of four, 
regarding the number of gridpoints required to reach a 
given accuracy, and by approximately a factor of two to 
three if computational time is the criterion. 

We make no claims that the method will be efficient for all 
problems. In particular, the problems we considered have 
smooth solutions; we doubt if the present algorithm will be 
effective if discontinuities develop. But if this is the case 
the usefulness of spectral methods, as compared to finite 
differences, becomes questionable anyway. 

Moreover, the problems we considered remained 
localized. For instance, had the solution of the nonlinear 
Schrodinger equation broken up into solitons travelling at 
different speeds, the present method will not be as effective. 
In such a case it may, however, be possible to combine 
the present idea with a moving grid method. In fact, 
we implemented a method based on the mappings 
x = a(t) + Ls/x or x = a(t) + L tan(s/2), where a(t) 

represents the movement of the grid, and it is chosen to keep 
the solution as centered on the grid s E [ -x, rc] as possible. 
This idea worked well in the test cases we considered. 
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